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As a generic model system of an asymmetric binary-fluid mixture, hexadecane dissolved in carbon dioxide
is considered, using a coarse-grained bead-spring model for the short polymer, and a simple spherical particle
with Lennard-Jones interactions for the carbon dioxide molecules. In previous work, it has been shown that this
model reproduces the real phase diagram reasonably well, and also the initial stages of spinodal decomposition
in the bulk following a sudden expansion of the system could be studied. Using the parallelized simulation
package ESPResSo on a multiprocessor supercomputer, phase separation of thin fluid films confined between
parallel walls that are repulsive for both types of molecules are simulated in a rather large system �1356
�1356�67.8 Å3, corresponding to about 3.2-million atoms�. Following the sudden system expansion, a
complicated interplay between phase separation in the directions perpendicular and parallel to the walls is
found: In the early stages the hexadecane molecules accumulate mostly in the center of the slit pore, but as the
coarsening of the structure in the parallel direction proceeds, the inhomogeneity in the perpendicular direction
gets much reduced. Studying then the structure factors and correlation functions at fixed distances from the
wall, the densities are essentially not conserved at these distances, and hence the behavior differs strongly from
spinodal decomposition in the bulk. Some of the characteristic lengths show a nonmonotonic variation with
time, and simple coarsening described by power-law growth is only observed if the domain sizes are much
larger than the film thickness.
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I. INTRODUCTION

Fluids confined in pores with linear dimensions on the
�m to nm scale find increasing applications and are the sub-
ject of many studies, both with respect to their static �1–5�
and dynamic �6–11� properties. Considering binary-fluid
mixtures, it is natural to expect that the �enthalpic and en-
tropic� interactions between the pore walls and the fluid par-
ticles may differ for both constituents, and then both density
and composition develop an interesting inhomogeneity in the
direction perpendicular to the pore walls. Of course, already
in the bulk the binary fluid may undergo both vapor-liquid
unmixing and fluid-fluid phase separation, resulting in com-
plex phase behavior �12,13�. In thin slit pores, phase separa-
tion as a thermodynamic phase transition is still possible in
the lateral directions parallel to the walls �4�, and due to the
possible interplay with wetting phenomena �14–17� compli-
cated phase diagrams are expected even for strictly symmet-
ric mixtures �4,18�. Particularly interesting, however, is the
kinetics of these phase transitions as a function of time t after
a quench. For a strictly symmetric binary Lennard-Jones
mixture, where one species is strongly attracted by the walls,
it has recently been shown by molecular-dynamics simula-
tions that the lateral phase separation kinetics is character-
ized by a power law for the size of the growing domains
�19–28�, ��t�� ta, with �29,30� a�2 /3 if ��t� is in the range
of a few Lennard-Jones diameters. While for simple diffusive
systems a=1 /3 both in the bulk �19� and in thin films, at late
enough times �31�, the much faster domain growth seen by
Das et al. �29,30� for a confined fluid binary mixture may be
due to some hydrodynamic mechanisms, but is not in accord
with the theoretical expectations �22–28�. Thus, it is interest-
ing to study the kinetics of phase separation for other models

of confined binary mixtures, in order to clarify which fea-
tures are universal and which features are model specific.

In the present work, we contribute to this problem by
studying phase separation for a model of a mixture of hexa-
decane �C16H34� and carbon dioxide �CO2�. There are several
reasons for this particular choice: First, supercritical CO2 is a
very important fluid in the chemical industry, useful as a
solvent in which various reactions can be carried out �32,33�,
particularly applications involving polymers. Thus, the sys-
tem C16H34+CO2 is a prototypical polymer+solvent system
�34�. Second, a rather simple coarse-grained model for this
system has been developed �35� which describes the experi-
mental phase diagram rather accurately. Third, spinodal de-
composition in the bulk has already been investigated for this
model by extensive simulations �36�. It was found that the
system is compatible with a growth according to ��t�� t1/3,
when ��t� starts to exceed the Lennard-Jones diameters,
while at late times a crossover to somewhat faster growth
occurs. Limitations due to the finite linear dimensions of the
simulation box preclude strong statements on the growth law
during the late stages, however.

In Sec. II, we shall introduce our model and briefly dis-
cuss the simulation technique. In Sec. III, simulation results
will be presented and discussed in the light of various theo-
retical considerations. Section IV contains a summary and
outlook to future work.

II. MODEL AND SIMULATION DETAILS

A. Coarse-grained model for hexadecane+carbon dioxide
mixtures

Although hexadecane is a very short polymer only, an
all-atom simulation of hexadecane melts would be difficult,
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since for a simulation study of phase separation kinetics,
length scales far beyond the size of a molecule need to be
explored, and also large time scales are mandatory
�22,25–28�. Therefore, it is advantageous to use a coarse-
grained model. Coarse-graining of polymers is usually done
by taking a few chemical monomers �CH2 or CH3 at chain
ends, in this case� together into effective monomers, ignoring
completely torsional potentials �37–40�. A successful model
of this type for C16H34 was proposed by Virnau et al. �35�,
incorporating three successive C-C bonds along a chain �plus
the corresponding hydrogen atoms� into one effective bead,
so that a chain of five effective monomers is created. Effec-
tive monomers along a chain are bound together via FENE
�finitely extensible nonlinear elastic� potentials �41�

UFENE�r� = − 33.75�pp ln�1 − �r/Rpp�2�, Rpp = 1.5�pp

�1�

where �pp, �pp are parameters of the Lennard-Jones �LJ� po-
tential, that acts between all beads of the polymer chains
�bonded as well as nonbonded ones�,

U�r� = ULJ�r� − ULJ�rcut� ,

ULJ = 4��	����	

r
�12

− ���	

r
�6	 , �2�

where a cutoff rcut=2rmin, rmin=21/6��	 is used and the po-
tential is shifted to zero at r=rcut so that U�r� is everywhere
continuous, with U�r
rcut�=0. Here � ,	= p �if the particle
is an effective monomer of the chains� or � ,	=s �if the
particle is a solvent molecule�. The parameters �pp, �pp and
�ss, �ss are chosen such that the model reproduces the experi-
mentally known �42� critical temperatures Tc and critical
densities �c for pure C16H34 and pure CO2, respectively
�34,35�. Thus, using �42� Tc=723 K and �c=0.219 g /cm3

has yielded �34,35� �henceforth we omit the index p�

� = 5.79 � 10−21 J, � = 4.52 � 10−10 m, �3�

while the experimental results for CO2, Tc=304 K and �c
=0.464 g /cm3 have yielded �34,35�

�ss = 0.726�, �ss = 0.816� . �4�

With these parameters �Eqs. �3� and �4�� the coexistence
curves in the temperature-density plane and the vapor pres-
sures at coexistence as well as the interfacial tension between
the coexisting phases are reproduced in reasonable agree-
ment with experiment �34,35�. An even better description of
CO2 could be obtained by including the quadrupole-
quadrupole interaction �43�, but this is out of consideration
in the present context.

The parameters �ps, �ps for the interactions between CO2
molecules and effective monomers are described �34,35� us-
ing a modified Lorentz-Berthelot mixing rule �44�

�sp = ��ss + �pp�/2, �sp = �
�ss�pp, �5�

with �34,35� �=0.886. While the standard Lorentz-Berthelot
mixing rule ��=1� would yield a phase diagram topology in
disagreement with the available experiments �45�, Eq. �5�
gives a phase diagram in rough agreement with these experi-

ments �34,35�. In the following, we shall choose �=1 as unit
of temperature �taking Boltzmann’s constant kB=1� and �
=1 as unit of length. Figure 1 shows an isothermal slice
through the phase diagram at reduced temperature T�

�kBT /�=1.16 in the plane of pressure p and molar fraction
x�Ns / �Ns+Np /5� of carbon dioxide, where Ns is the num-
ber of carbon dioxide molecules and Np the number of effec-
tive monomers of hexadecane. As will be described below,
we shall simulate pressure-jump experiments where the sys-
tem suddenly is brought from a state in the one-phase region
�the initial state is equilibrated at a density �tot

� ���3=0.8 in
the middle of the slit pore, which would correspond to a
reduced pressure p�� p�3 /�=0.34 in the bulk system� into
the two-phase region by an isotropic increase of the volume
available to the particles.

For a system in a thin film geometry, it is also necessary
to specify the boundary conditions created by the planar
walls confining the thin film. We choose an atomistic de-
scription of these walls, setting particles on a regular �and
rigid� triangular lattice of lattice spacing �=1, in the �x ,y�
plane at z=0.01 and z=0.99Lz, z being the coordinate in the
direction perpendicular to the walls. The interactions be-
tween the wall particles �w� and solvent particles or effective
monomers are described by the purely repulsive part of the
LJ potential, Eq. �2�, using rcut=rmin and

�ws = �wp = � = 1, �ws = �wp = 1. �6�

This choice was made to avoid the formation of precursors
of wetting layers of one of the species, unlike �29,30�, where
an attractive interaction between the walls and one of the
species in the binary �A ,B� mixture was chosen. We deliber-
ately choose the wall-particle interactions symmetric in the
present case, to avoid any strong preference of the wall for
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FIG. 1. Isothermal slice through the binary phase diagram of the
present model for CO2+C16H34 mixtures at T=486.2 K �reduced
temperature T�=1.16� in the bulk, using the pressure p and the
molar fraction x of CO2 as variables. The coexistence curve en-
closes a two-phase coexistence region containing a polymer-rich
phase �left-hand side� and a supercritical CO2 vapor �near x=1,
right-hand side�. The simulations of quenching experiments dis-
cussed in the present paper are done for x=0.6. This phase diagram
is taken from the results of Ref. �35�.
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one of the components in our case. However, since �unlike
Refs. �29,30�� the present model is not a symmetric mixture
in the bulk, we do expect some wall-induced concentration
inhomogeneities for the present model as well. As demon-
strated recently for the case of colloid-polymer mixtures
�46�, an effective attractive interaction due to repulsive walls
may arise due to purely entropic origin.

B. Simulation method and preparation of the initial state

We study the kinetics of phase separation in thin films of
CO2+C16H34 mixtures by molecular-dynamics �MD� meth-
ods �47–49�. As is well known, in simple fluids and binary-
fluid mixtures hydrodynamic interactions are important both
for the dynamics of fluctuations near equilibrium �28,50� and
for the kinetics of coarsening in the late stages of spinodal
decomposition �21–28�. MD simulations �in the microca-
nonical NVE ensemble where energy E is conserved for fixed
number of particles N and fixed volume V� include these
effects of hydrodynamics implicitly and fully �47–49�. In
fact, previous studies of phase separation in the bulk have
used this method successfully for both simple liquid-vapor
phase separation and for studies of unmixing of binary-fluid
mixtures �see, e.g., �51–55��. We apply for our system the
software package ESPResSo, version 1.9.7h, 2005 �56�
which is particularly suitable for simulation of coarse-
grained soft matter systems on parallel computers.

For the integration of Newton’s equation of motion the
velocity Verlet algorithm �47–49� is applied, choosing an
integration time step 
t=0.002�, where the MD time unit
here defined as �=��m /��1/2=1 corresponds to 500 integra-
tion steps. The masses m of CO2 molecules, effective mono-
mers and wall particles are set for simplicity equal to each
other, and time units are chosen such that m=1.

The initial state is created by first using a small simulation
box Lx�Ly �Lz with Lx=Ly =20, Lz=12 �measured in units
of � throughout this paper� with two repulsive walls at z
=0.01 and z=0.99Lz, as described in Sec. II A, and periodic
boundary conditions in x and y directions. Into this box,
hexadecane molecules were inserted, having self-avoiding
walk configurations, and the CO2 particles were inserted at
random position, at molar fraction of CO2 x=0.6, such that
the initial state reaches a reduced total monomer density of
�tot

� =0.8 in the center of the thin film. The CO2 particles were
only allowed to be set at positions outside of a sphere of
radius �=1 of each bead, to avoid that in the initial state very
large repulsive forces occur. Choosing a Langevin thermostat
�47–49�, the system then is equilibrated at T�=1.16 and is
replicated three times in the x and y directions, to obtain a
system with linear dimensions Lx=Ly =60. This 9 times
larger system then is equilibrated again, for a time of 300
MD time units �1.5�105 MD steps�, to remove the effects
due to original periodicity at Lx=Ly =20. It was carefully
tested that for the chosen conditions �i.e., for a supercritical
solution of relatively short chains� such a short reequilibra-
tion time actually was enough. Then the thermostat was
switched off, and a Galilei transformation of particle veloci-
ties was applied to remove the motion of the center of mass
of our model system. This still rather small system, as de-

scribed above, was only used for testing our simulation and
analysis procedures as well as for choosing optimal param-
eters for the pressure-jump simulations. To obtain the initial
state of the full system at the desired dimensions Lx=Ly
=240, Lz=12, the system was replicated again four times in
the x and y direction, and the procedure of equilibration and
Galilei transformation, as described above, was repeated
again. The structure factor of the system was carefully ana-
lyzed to check that any signs of the Bragg peaks �due to the
periodic arrangement of the replicas� have disappeared. Then
the system was equilibrated further for 400 MD time units
�2�105 MD steps�, before the quench was started. Note that
at this stage we have already a total number of N=589 999
particles, namely 294 000 chain segments �i.e., 58 800
chains�, 88 400 solvent particles and 207 599 wall particles.
Since each CO2 solvent particle contains three atoms, and
each C16H34 chain contains 50 atoms, the total number of
atoms �if we had an atomistic model� in our system would be
3 205 200 �not counting the wall atoms�.

The pressure-jump quenching experiment has the effect
that the system after the sudden quench can take a larger
volume, and since the particle numbers always are fixed, this
corresponds to a decrease of density. We do not attempt to
precisely mimic how the pressure jump is carried out in an
actual experiment, but we simply rescale the positions of the
centers of mass of hexadecane and carbon dioxide molecules
in three directions such that the final dimensions of the simu-
lation box were Lx=Ly =300 and Lz=15. Of course, one must
not simply rescale all the coordinates of the effective mono-
mers, since the conformation of an individual C16H34 mol-
ecule �bond lengths and positions of the monomers along a
chain relative to each other� should not be rescaled but rather
stays the same, just the molecules are moved farther apart
from each other at lower density. Note that due to Eq. �3� this
final size of the box corresponds to Lx=Ly =1356 Å while
Lz=67.8 Å, so the system still is a ultrathin nanoscopic film.
Wall particles were removed from the system before the res-
caling of CO2 and C16H34 positions and inserted just after the
rescaling procedure, so that the arrangement of the wall par-
ticles �and the distances between them� stay exactly the same
as before the quench. In addition, we reduce the energy of
the system by rescaling the kinetic energy of the particles to
ensure that the temperature of the system after the quench
becomes very similar to the initial temperature of the equili-
brated homogeneous system. Physically the walls confining a
thin fluid film would be massive solid walls of a suitable
device, of course, and thermostatting the walls would have
the effect of maintaining constant temperature conditions.
Our procedure is meant as a short-cut for such a situation.

The simulation of the system after the quench is per-
formed in the NVE ensemble for 4000 MD time units corre-
sponding to 2-million MD time steps. For the first 200 MD
time units �105 MD steps�, 30 runs were performed in paral-
lel, storing configurations after every 10 MD time units. For
later times, due to the large computational effort for our sys-
tem, five systems were propagated and configurations were
analyzed for every 100 MD time units only. These simula-
tions were carried out on the multiprocessor system JUMP of
the John von Neumann Institute for Computing �NIC� at
Jülich, utilizing 16 processors in parallel, and the cluster of
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the SOFTCOMP EU Network of Excellence, utilizing four
processors in parallel.

III. SIMULATION RESULTS

A. Transient segregation between solvent and polymer forming
a layered state

Figure 2 shows typical snapshot pictures that illustrate the
time evolution of the phase separation process in the thin

film. These snapshots show quasi-two-dimensional slices
parallel to the wall, the left-hand column being about three
layers �of total 10� away from the wall, the right-hand col-
umn being close to the center of the film �layer 5�. Already
these pictures show an interesting interplay of phase separa-
tion in the directions perpendicular and parallel to the con-
fining walls: In the initial stage, t=10 �Figs. 2�a� and 2�f��,
the system is still laterally homogeneous, apart from very
strongly localized density fluctuations, but there is a strong
variation of density across the film: Most of the effective
monomers are concentrated in the center of the film �Fig.
2�f��. This observation is still true at t=50 �Figs. 2�b� and
2�g��, but now lateral phase separation has clearly started: In
the center of the pore �Fig. 2�g��, the white “holes” mean that
CO2 bubbles with a few hexadecane molecules �i.e., a dilute
solution of chains in supercritical CO2� have formed within
the concentrated C16H34 /CO2 solution, while near the walls
�Fig. 2�b�� we rather have ramified clusters of C16H34 mol-
ecules in a CO2-rich fluid. At later times, these structures
coarsen �t=100,200� and, at the same time, the difference in
density between the center of the thin film and the regions
near the walls diminishes. For t=1000 �as well as for later
times, that are not shown here� the density difference has
almost vanished �Figs. 2�e� and 2�j��. What is more impor-
tant, the regions in the �x ,y� plane where the CO2-C16H34
interfaces occur, are identical in the left-hand and the right-
hand snapshots: We can picture the phase separation in the
late stages, where the characteristic linear dimensions of the
growing CO2 bubbles in the concentrated C16H34 /CO2 solu-
tion in x ,y direction are much larger than the film thickness
Lz, simply as a quasi-two-dimensional arrangement of flat
cylinders of height Lz, forming bridges between the two
walls. While some of the CO2 droplets at t=1000 still deviate
strongly from a circular cross section in x ,y directions, actu-
ally an inspection of snapshots at still later times, such as t
=4000 �not shown here� shows that the droplets in fact do
develop toward becoming a circular cross section, thus,
minimizing the interfacial area �and energy�. Ultimately �at
time t→� in a macroscopically large system in x ,y direc-
tions� we expect a population of strictly regular cylinders of
typical radius R�t� connecting the two walls and with R�t�
growing to infinity as well. Unfortunately, for t=4000 in our
system the number n�t� of cylinders was only n�t=4000�
=8, implying that the data suffer from very strong finite size
effects. In fact, studies of coarsening in simple diffusive
models have suggested that finite size effects become impor-
tant already when the number n�t� of growing domains be-
comes distinctly smaller than n�t�=20 �57�, and hence our
data for t
1000 clearly suffers from finite size effects, de-
spite the rather large linear dimensions and number of par-
ticles in our system. Therefore, there is no point in carrying
out our MD simulations for the system dimensions chosen
here after longer times.

Figure 3 shows now the laterally averaged total density of
particles which we define as follows:

�tot�z� = �Ni
s + Ni

p�/Vi, �7�

where Ni
s is the number of solvent �carbon dioxide� mol-

ecules in layer z�zi with zi located in the middle of the

FIG. 2. Snapshot picture showing the structure formation after
the quench for Lx=Ly =300� slices of width 1.5� centered at z
=3.75� �a�–�e� and at z=6.75� �f�–�j�. Snapshots are presented at
times t=10 �a,f�, 50 �b,g�, 100 �c,h�, 200 �d,i�, and 1000 �e,j�. The
insets in snapshots �c� and �h� illustrate the enlarged regions in the
left-hand bottom corner of size 30��30� �marked by rectangles�:
The gray spheres correspond to the supercritical solvent molecules,
and the black spheres represent the chain molecules.
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interval �z=0.15; Ni
p is the number of effective monomers of

hexadecane in this layer, and Vi=LxLy�z the associated vol-
ume of layer i. We have tested that the dependence of the
profile �tot�z� on the width �z of this volume slice Vi is not
important. Our choice was taken to ensure that fluctuations
in �tot�z� are small enough but no significant information on
the inhomogeneity of the system in z direction is lost. One
can see that near both walls there is always a region �of
thickness �0.82�� essentially free of particles, and then the
density both in the initial state and in the final state gradually
increases to an almost constant density in the inner part of
the film, �tot�z /Lz�0.5��0.8 before the quench and
�tot�z /Lz�0.5��0.4 during the late stages. However, at early
times after the quench, most of the particles accumulate in
the center of the film, so the system initially takes a state
which shows a phase separation of the liquid-vapor type in
the z direction perpendicular to the walls: Vapor layers occur
close to the walls, and a fluid �where CO2 and C16H34 are
still almost homogeneously mixed� occurs in the center of
the film. However, this vertically separated state is unstable
against lateral phase separation, in the directions parallel to
the walls, as we have already seen from the snapshot pictures
in Fig. 2. Thus, in a particular distance z from the walls the
density �tot�z� approaches its final equilibrium in a nonmono-
tonic fashion as a function of time, e.g., for z /Lz=0.2 the
density decays fast from a rather large value ��tot�0.6� to a
very small value ��tot�0.07� immediately after the quench,
and only when the lateral phase separation starts the density
increases again. Note that the two-stage character of the
phase separation process, where first a stratified structure
forms, with low density in the film center, which then later-
ally decomposes, is not a consequence of studying a binary
mixture, but rather a consequence of purely repulsive wall-
particle interactions. In fact, we have checked for pure CO2
that a similar behavior occurs.

It is also interesting to study the density profiles �s�z�
=Ni

s /Vi and �p�z�=Ni
p /Vi of the solvent particles and the

monomers separately, and to define also a profile c�z� of the
relative concentration of CO2,

c�z� = �s�z�/��s�z� + �p�z�� . �8�

Figure 4 displays the latter profile: One can see that despite
the fact that we have chosen the same repulsive potential
between wall atoms and the monomers or solvent particles,
respectively, nevertheless the relative concentration of CO2
near the walls is strongly enhanced, both in the initial state
and during the late stages of phase separation. Actually, the
curves for c�z� in the initial state and in the late stages �t

500� almost fall on top of each other. Only in the early
times after the quench �10� t�100� do we see a much
stronger variation of c�z�: Near the walls almost pure CO2
phase is reached. So the phase separation clearly proceeds in
two stages: Induced by the walls, first in the direction per-
pendicular to the walls a layered structure forms, CO2 and
C16H34 get almost completely segregated, with the polymer
film in the center and two CO2-C16H34 interfaces near z /Lz
�0.25 or 0.75, respectively. However, this state costs far too
much �interfacial� energy, and is hence unstable toward lat-
eral phase separation. Both in the initially homogeneous state
and in the final state with the “cylindrical” CO2 domains
across the thin film �Fig. 2� we have a strong concentration
enhancement of CO2 near the walls. This enhancement
clearly is an entropic effect, from the point of view of con-
figurational entropy polymers tend to avoid the regions close
to the walls.

Of course, for times t�100 the system clearly is rather
far from equilibrium, and its state is changing rather rapidly.
Monitoring the temperature �from the kinetic energy�
�47–49� and the pressure �using the virial theorem �47–49��
as a function of time after the quench, a distinct but rela-
tively small increase with time in the region 10� t�100 is
indeed found �Fig. 5�. However, for later times both quanti-
ties settle down at constant values, as desired.
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FIG. 3. Total density profile �tot�z� �laterally averaged in the thin
film� plotted vs position across the slit pore z /Lz for the initial state
before the quench �Lz=12� , Lx=Ly =240��, and for different
stages of phase separation �Lz=15� , Lx=Ly =300��. The curves
are shown at different times after the quench, as indicated.
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FIG. 4. Relative concentration profile c�z� of the solvent later-
ally averaged in the thin film plotted vs position across the slit pore
z /Lz for the same times and the system dimensions as shown in
Fig. 3.
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B. Equal-time structure factors

In experimental studies of phase separation kinetics, most
often the equal-time structure factor S�q� , t� is monitored, q�
being the wave vector of a scattering experiment �22–28�.
For a thin film geometry, q� needs to be oriented in the
�x ,y�-plane, of course, q� =q� �. Also, due to the inhomogeneity
of the system in the z direction �Figs. 3 and 4�, it is of
interest to distinguish in the structure factor from which slice
�z� the scattering particles contribute to the scattering inten-
sity. Moreover, having two components �which here we sym-
bolically denote as A and B, in order to make contact be-
tween our notation and the relevant literature �58,59�� one
must distinguish partial structure factors and those which
monitor density and concentration fluctuations. Thus, we de-
fine the partial structure factors, resolved with respect to the
z coordinate, as follows:

S�	�q� �,z,t� =
1

N


k=1

N�



�=1

N	

�exp�iq� · �r�k��t���� , �9�

where � ,	=A or B, r�k��t�=r�k�t�−r���t�, and N�, N	 being the
numbers of particles of type A or B in the slice at z �i.e., the
coordinates zk�t�, z��t� of the particles must be in the range
z−�z�zk�t�, z��t��z+�z�. While ideally one would like to
consider the limit �z→0, in practice we had to choose a
rather larger value of �z �namely �z=0.75� in order to get
enough statistics.

For fluids S�	�q� � ,z , t� depends only on the magnitude q�

of q� � and not its direction. Thus, the structure factors moni-
toring fluctuations of number density �Snn� and of concentra-
tion �Scc� are defined as follows:

Snn�q�,z,t� = SAA�q�,z,t� + 2SAB�q�,z,t� + SBB�q�,z,t� ,

�10�

Scc�q�,z,t� = xB
2SAA�q�,z,t� + xA

2SBB�q�,z,t� − 2xAxBSAB�q�,z,t� ,

�11�

where xA=NA / �NA+NB� and xB=NB / �NA+NB� are the rela-
tive concentrations of A�B� particles in the slice centered at

z. To simplify the notation in the following, the index � from
q� will be omitted.

Note that due to the motion of particles in the z direction,
NA and NB are not conserved for a selected layer; in particu-
lar, during the early stages of phase separation, xA and xB
change strongly with time. As an example, Fig. 6 presents
Snn�q ,z , t� as a function of wave number q for different
choices of z, and three times, before the quench �a�, at t
=40 �b�, and t=100 �c� after the quench. The values of z
shown in the figure are symmetric around the center of the
film, which occurs at �Lz /2�, and therefore pairs of curves
should superpose, apart from statistical errors. We see that
this symmetry indeed is rather well satisfied �e.g., the curves
for the layers 5 and 6 are indistinguishable from each other
in the scale shown in Fig. 6�c��, and hence the statistical
errors of our data indeed are rather well under control. One
can see a peak near q=2� which changes relatively little
with time: This peak and the structure at still larger q reflect
the local packing of particles in a dense fluid. Apart from the
values of z very close to the walls �e.g., for layers 1 and 10,
where almost no particles occur, as the density profiles ��z , t�
in Fig. 3 show�, all curves exhibit a minimum somewhere in
the region 2�q�4, while for smaller q, the structure factor
Snn�q ,z , t� increases again. In equilibrium, the maximum of
the structure factor occurs for q→0 �Fig. 6�a��, as expected,
while after the quench for large enough times, Snn�q ,z , t�
exhibits a well-defined maximum for small q �Fig. 6�c��:
This small-angle scattering is the “hallmark” of spinodal de-
composition. However, close to the walls �i.e., for layers 2, 3,
8, and 9 centered at z=2.25, 3.75, 11.25, and z=12.75, re-
spectively, in Fig. 6�b�� the scattering intensity for small q
does not seem to decrease again, and so the maximum is
much less pronounced. Indeed, this range of z clearly exhib-
its a lack of conservation of the density, due to the rapid
change of the total density ��z , t� in this regime of times �cf.
Fig. 3�.

The analysis of Scc�q ,z , t� gives a similar picture, and
hence is not shown here. We rather try to use both Snn�q ,z , t�
and Scc�q ,z , t� to extract characteristic lengths R�t� by taking
suitable ratios of moments �22�. We define R1�z , t� from
Snn�q ,z , t�,

R1�z,t� = 2� 

q=0

q=qcut

Snn�q,z,t�� 

q=0

q=qcut

qSnn�q,z,t� , �12�

and similarly for R2�z , t� from Scc�q ,z , t�. The resulting data
are shown in Figs. 7 and 8 for different choices of z and
different values for the cutoff qcut.

Data for 1� t�10 were not included, since at such ex-
tremely short times after the quench both pressure and tem-
perature still are rather strongly time dependent, the system
is very far from equilibrium in all respects, and a discussion
of the evolution of the system in terms of the concepts on
coarsening �22–28� would be rather misleading. Also the be-
havior in the next decade, 10� t�100, is difficult to inter-
pret: We see an unusually strong dependence of both R1�z , t�
and R2�z , t� on the cutoff qcut, and for some values of z there
occurs a slight maximum at about 30� t�60. This behavior
can be attributed to the special interplay between phase sepa-
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FIG. 5. Time evolution of the reduced temperature T� �top� and
the reduced pressure p� �bottom� before and after the quench. The
time of the quench is at t=0.

BUCIOR, YELASH, AND BINDER PHYSICAL REVIEW E 77, 051602 �2008�

051602-6



ration in the directions parallel and perpendicular to the walls
�Figs. 2–4�. Since the redistribution of both density �Fig. 3�
and relative concentration �Fig. 4� between different z is so

pronounced during this range of times, the time evolution for
a given value of z is similar to the time evolution of a system
whose order parameter is not conserved. In the thin film as a
whole, however, both particle numbers are conserved; hence,
the density and concentration are conserved variables, when
we consider the total film. Only for times t=500 or larger the
profiles of density ��z� and concentration c�z� are practically
independent of time, and then in a particular layer �i.e., par-
ticular value of z� the order parameters behave as if they
were strictly conserved. Gratifyingly, in the time region from
200� t�2000 the data for R1�z , t� and R2�z , t� show indeed a
much more standard behavior, being essentially independent
from the cutoff qcut, and almost independent of z, showing
that now a well-defined unique length scale exists in the
system. Figures 7 and 8 reveal that in this range of times we
almost find straight lines at the log-log plots, with a slope
slightly below 1/3. For t
2000 the curves even get slightly
flatter, so the growth gets slower; we attribute this effect to
the onset of finite size effects. An important finding of our
study, however, is that we do not see any evidence for the
anomalous law ��t�� t2/3 found by Das et al. �29,30� in a
symmetric mixture confined in thin film geometry. It remains
to be understood whether this different coarsening behavior
is primarily due to the lack of symmetry between phase sepa-
rating species in our system or due to different boundary
conditions at the walls.

FIG. 6. Density-density structure factor Snn�q ,z , t� in the initial
state after equilibration �just before the quench� for the system of
the linear dimensions Lx=Ly =240�, Lz=12� �a�, and after the
quench at times t=40 �b� and t=100 �c� for the system dimensions
Lx=Ly =300�, Lz=15�. Various choices of z are included, as indi-
cated in the figure. In case �a�, an average over 130 configurations
was performed, while in cases �b� and �c�, 30 configurations were
averaged over. Note: The two curves for layers 5 and 6 �in the
middle of the slit pore� cannot be distinguished on the scale shown
in �c�. In all cases, the film was divided into 10 slices of width
2�z=Lz /10.
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FIG. 7. log-log plot of the characteristic domain size R1�z , t�
�calculated from the density-density structure factor Snn shown in
Fig. 6� vs time for four choices of z, as indicated in the figure, and
three plausible choices of the cutoff for the wave vector, qcut=1, 2,
or 3, respectively.
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C. Equal-time correlation functions in real space

In the context of simulations, it has some practical advan-
tages to extract characteristic lengths from the equal-time
correlation functions in real space �60� rather than using the
structure factors. In fact, also the result for a length ��t�
growing as ��t�� t2/3 was extracted from such a real-space
analysis �29,30�. Thus, it is of interest to study real-space
correlations in the present context, too, to check whether the
findings of Figs. 7 and 8 are corroborated.

We define a normalized pair correlation function G�r ,z , t�
as

G�r,z,t� =
g�r,z,t� − 1

g̃�r = 0,z,t� − 1
, �13�

where g�r ,z , t� in the equal-time radial distribution function
for effective monomers of hexadecane in a slice z of width
2�z=1.5� at the time t. Here, the distance r= �r�k�t�−r���t��
and the coordinates zk�t�, z��t� of the particles labeled as k
and � are restricted to this slice, as in Eq. �9�. The value of
g̃�r=0,z , t�, which is used to normalize G�r ,z , t�, we obtain
by extrapolating g�r ,z , t� from the region r�4� to r=0 as
described below, thus ignoring the local packing effects,
which are present in the radial distribution function at short
distances.

Figure 9 shows such data for the layer 3 �z=3.75�� �a�
and the layer 5 �z=6.75�� �b�. While in the center of the film
�layer 5� the curves intersect the abscissa, and hence one
could follow the traditional method �27,30� to define a char-
acteristic domain linear dimension ��t� from the first zero
crossing of G�r ,z , t�, this method clearly does not work in
slices close to the walls: e.g., for z=3.75� and time t=40
�shown in the inset of Fig. 9�a�� we rather see a continuous
decay toward the abscissa with a very flat minimum at r
�18� instead of a clearly identifiable crossing of the ab-
scissa. Thus, we tried heuristically an alternative way to ex-
tract a length ��t�, by fitting a straight line to G�r ,z , t� in the
regime 0.6�G�r ,z , t��1. The zero crossing of these straight
lines would allow us to identify a length ��t� for all values of
z. However, this method also is doubtful, particularly for
times t�100, since there the curves for G�r ,z , t� show
strong oscillations for small r. These oscillations are not due
to bad statistics, but simply reflect the liquid short-range or-
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FIG. 9. The real-space normalized pair correlation function
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slope of these curves at r=0 using Eq. �15�.
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der: Oscillatory variation of g�r ,z , t� due to the packing of
particles in the nearest-neighbor shell, next-nearest-neighbor
shell, third-nearest-neighbor shell, etc., around a particle
�58�. This short-range order needs to be disentangled from
the growth of a length scale due to phase separation �Fig.
10�. Only when g�r� is distinctly nonzero for r
4�, the
growing length scale can be identified; therefore, very short
times �such as t=20� obviously must be discarded. However,
in the regime r
4� and t�100, g�r ,z , t� exhibits also clear
curvature, and hence any straight line fit prone to large sys-
tematic errors. Therefore, we choose the ad hoc form

y�r,z,t� = 1 + a�z,t�exp�− r/l̃�z,t�� + b�z,t� �14�

to smooth our data for g�r ,z , t� using a�z , t�, l̃�z , t�, and
b�z , t� as fit parameters; b�z , t� is negative when a zero cross-
ing �i.e., g�r ,z , t�−1=0 at r�4�� occurs and is positive oth-
erwise. This fit function is used in the range r�4� and
g�r ,z , t��1.01 but actually provides a good representation of
the actual data down to and below the first-zero crossing for
those values of z and t where such a zero crossing occurs.
Also, this function is used to extrapolate from the region r
�4� to r=0 to obtain the normalization constant g̃�r
=0,z , t�=1+a�z , t�+b�z , t� for Eq. �13�. From the first-order
Taylor expansion of Eq. �14� we obtain an approximation to
G�r ,z , t�,

G�r,z,t� �
a�z,t��1 − r/l̃�z,t�� + b�z,t�

a�z,t� + b�z,t�
= 1 − r/l�z,t� ,

�15�

from which we can also define a characteristic length l�z , t�
= l̃�z , t��a�z , t�+b�z , t�� /a�z , t� as a value of r at the intersec-
tion of a line given by Eq. �15� with the axis G=0.

Figure 11 shows the time evolution of the characteristic
length ��z , t� extracted in this way for three choices of z.
While for t�100, where ��z , t� is only of the order of a few
�, indeed the data seem to be compatible with a behavior
��z , t�� t2/3 as observed by Das et al. �29�, for the decade

100� t�1000 the data seem to be compatible with ��z , t�
� t1/2 showing a crossover to ��z , t�� t1/3 at a later time. For
t
1000, a crossover to a still slower growth is evident in our
simulations, which is however strongly affected by finite size
effects, since the number of growing �cylinder-shaped� do-
mains is already rather small. Note that this implies that fi-
nite size effects already set in for ��z , t��20�, so despite our
large system �300��300�� we cannot follow the kinetics of
spinodal decomposition for a large enough range of times in
order to make significant statements on the asymptotic power
law growth. Much larger systems need to be simulated for
this purpose.

IV. CONCLUSIONS

In this work, we have presented computer simulations of
spinodal decomposition of a coarse-grained model for a
compressible binary-fluid mixture, which roughly describes
hexadecane dissolved in supercritical carbon dioxide. This
system has a very asymmetric phase diagram in the plane of
variables pressure and molar fraction �Fig. 1�, and the
pressure-jump considered in the present work is strongly off-
critical: The number of CO2 molecules is 88 400 while the
number of C16H34 chains is 58 800 �leading to 294 000 ef-
fective segments�. We find that the phase separation is a two-
step process: In the first step, there is a strong segregation
between solvent and polymer leading to a layered structure,
with solvent rich layers adjacent to the walls, and a polymer-
rich ultrathin polymer film “sandwiched” in between. This
stratified structure, however, is unstable: The free-standing
polymer film in the center of the slit pore breaks up,
CO2-rich bubbles form, and finally a pattern develops with
cylinder-shaped CO2-rich domains, the radius of which
grows with a ��t�� t1/3 law �at the latest stages accessible to
our simulation, as long as finite size effects are still negli-
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gible�. For the earlier stages of phase separation, where a
strong coupling between the phase separation in perpendicu-
lar and parallel directions �with respect to the walls� occurs,
we conclude that a description of the structure in terms of
power laws of characteristic linear dimensions is somewhat
misleading, since characteristic lengths extracted from the
structure factor and from the pair correlation function are
quite incompatible with each other. We suggest that there is
no simple scaling behavior in this regime. Note that although
we have chosen the potential between wall particles and sol-
vent particles identical to the potential between wall particles
and effective monomers, both in the initial and final stages of
phase separation there is significant enrichment of CO2 near
the walls, although our snapshot pictures �resolved as func-
tions of z and t in Fig. 2� indicated that the data still belong
to an incomplete wetting regime.

Thus, it would be interesting to have a more detailed the-
oretical understanding from analytical theory for phase sepa-
ration with two coupled order parameters �density and con-
centration, in our case�. Additional simulations would be
valuable where wall-particle interactions are chosen such
that a strictly “neutral wall” situation is achieved, where no
surface enrichment occurs, and hence the pure confinement
effect on phase separation �not disturbed by the formation of
precursors of wetting layers� could be studied. Also, it would
be clearly worthwhile to study more systematically how the
phase separation kinetics depends on slit thickness, compo-
sition of the mixture, and quench depth. We did some pre-

liminary runs at one different quench depth in which the
system volume was increased by factor 1.73 instead of 1.95
discussed in our paper and found a rather similar behavior.
However, significantly different behavior is expected for
shallow quenches through the critical point, since the corre-
lation length of density and concentration fluctuations can
exceed the slit thickness, and formation of a stratified struc-
ture is not expected. Finally, in order to get rid of finite size
effects, simulations with billions of particles on massively
parallel supercomputers would be required. However, such
detailed and computationally extensive studies would be a
very challenging task for presently available computer re-
sources and itself could be a topic for future papers. We also
hope the present work will stimulate more work on the ki-
netics of phase separation in nanoscopic confinement such as
very thin channels.
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